Artificial Neural Networks for Misuse Detection
نویسنده
چکیده
Misuse detection is the process of attempting to identify instances of network attacks by comparing current activity against the expected actions of an intruder. Most current approaches to misuse detection involve the use of rule-based expert systems to identify indications of known attacks. However, these techniques are less successful in identifying attacks which vary from expected patterns. Artificial neural networks provide the potential to identify and classify network activity based on limited, incomplete, and nonlinear data sources. We present an approach to the process of misuse detection that utilizes the analytical strengths of neural networks, and we provide the results from our preliminary analysis of this approach.
منابع مشابه
The Application of Artificial Neural Networks to Misuse Detection: Initial Results
Misuse detection is the process of attempting to identify instances of network attacks by comparing current activity against the expected actions of an intruder. Most current approaches to misuse detection involve the use of rule-based expert systems to identify indications of known attacks. However, these techniques are less successful in identifying attacks which vary from expected patterns. ...
متن کاملIntegration of Color Features and Artificial Neural Networks for In-field Recognition of Saffron Flower
ABSTRACT-Manual harvesting of saffron as a laborious and exhausting job; it not only raises production costs, but also reduces the quality due to contaminations. Saffron quality could be enhanced if automated harvesting is substituted. As the main step towards designing a saffron harvester robot, an appropriate algorithm was developed in this study based on image processing techniques to recogn...
متن کاملDamage detection and structural health monitoring of ST-37 plate using smart materials and signal processing by artificial neural networks
Structural health monitoring (SHM) systems operate online and test different materials using ultrasonic guided waves and piezoelectric smart materials. These systems are permanently installed on the structures and display information on the monitor screen. The user informs the engineers of the existing damage after observing signal loss which appears after damage is caused. In this paper health...
متن کاملComparison Study on Neural Networks in Damage Detection of Steel Truss Bridge
This paper presents the application of three main Artificial Neural Networks (ANNs) in damage detection of steel bridges. This method has the ability to indicate damage in structural elements due to a localized change of stiffness called damage zone. The changes in structural response is used to identify the states of structural damage. To circumvent the difficulty arising from the non-linear n...
متن کاملA Proposal of Protocol and Policy-Based Intrusion Detection System
Currently, intrusion detection systems (IDSs) are widely deployed in enterprise networks for detecting network attacks. Most existing commercial IDSs are based on misuse detection model. In misuse detection, although known attacks can be detected, unknown ones cannot be detected because attack signatures for unknown attacks cannot be generated. In this paper, we propose a method for detecting n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998